Identification of filamentous fungi isolates by MALDI-TOF mass spectrometry: clinical evaluation of an extended reference spectra library.

نویسندگان

  • Pierre T Becker
  • Annelies de Bel
  • Delphine Martiny
  • Stéphane Ranque
  • Renaud Piarroux
  • Carole Cassagne
  • Monique Detandt
  • Marijke Hendrickx
چکیده

The identification of filamentous fungi by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) relies mainly on a robust and extensive database of reference spectra. To this end, a large in-house library containing 760 strains and representing 472 species was built and evaluated on 390 clinical isolates by comparing MALDI-TOF MS with the classical identification method based on morphological observations. The use of MALDI-TOF MS resulted in the correct identification of 95.4% of the isolates at species level, without considering LogScore values. Taking into account the Brukers' cutoff value for reliability (LogScore >1.70), 85.6% of the isolates were correctly identified. For a number of isolates, microscopic identification was limited to the genus, resulting in only 61.5% of the isolates correctly identified at species level while the correctness reached 94.6% at genus level. Using this extended in-house database, MALDI-TOF MS thus appears superior to morphology in order to obtain a robust and accurate identification of filamentous fungi. A continuous extension of the library is however necessary to further improve its reliability. Indeed, 15 isolates were still not represented while an additional three isolates were not recognized, probably because of a lack of intraspecific variability of the corresponding species in the database.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A MALDI-TOF MS procedure for clinical dermatophyte species identification in the routine laboratory.

The conventional identification of dermatophytes requires a long turnaround time and highly skilled mycologists. We have recently developed a tandardized matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) assay to routinely identify molds of potential clinical significance. This study objective was to determine if this same assay could also be employed t...

متن کامل

Evaluation of the Vitek MS Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry System for Identification of Clinically Relevant Filamentous Fungi.

Invasive fungal infections have a high rate of morbidity and mortality, and accurate identification is necessary to guide appropriate antifungal therapy. With the increasing incidence of invasive disease attributed to filamentous fungi, rapid and accurate species-level identification of these pathogens is necessary. Traditional methods for identification of filamentous fungi can be slow and may...

متن کامل

Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

BACKGROUND Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry accurately identifies both selected bacteria and bacteria in select clinical situations. It has not been evaluated for routine use in the clinic. METHODS We prospectively analyzed routine MALDI-TOF mass spectrometry identification in parallel with conventional phenotypic identification of bacte...

متن کامل

Evaluation of the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry Bruker Biotyper for identification of Penicillium marneffei, Paecilomyces species, Fusarium solani, Rhizopus species, and Pseudallescheria boydii

We evaluated the performance of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), the MALDI Bruker Biotyper system (microflex LT; Bruker Daltonik GmbH, Bremen, Germany), on the identification of 50 isolates of clinically encountered molds, including Penicillium marneffei (n = 28), Paecilomyces species (n = 12), Fusarium solani (n = 6), Rhizopus species...

متن کامل

Successful identification of clinical dermatophyte and Neoscytalidium species by matrix-assisted laser desorption ionization-time of flight mass spectrometry.

Dermatophytes are keratinolytic fungi responsible for a wide variety of diseases of glabrous skin, nails, and hair. Their identification, currently based on morphological criteria, is hindered by intraspecies morphological variability and the atypical morphology of some clinical isolates. The aim of this study was to evaluate matrix-assisted laser desorption ionization-time of flight mass spect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical mycology

دوره 52 8  شماره 

صفحات  -

تاریخ انتشار 2014